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The finiteness of observational and computational precision suggests that not only the initial condi-
tion, as is usually assumed, but also the evolution law of dynamical systems is affected by unavoidable
uncertainties. The consequences are explored for chaotic systems by suitably generalizing the concept of
the Lyapunov exponent in the case of one-dimensional maps. The relation between the results obtained

and the shadowing problem is discussed.
PACS number(s): 05.45.+b
I. INTRODUCTION

A fundamental feature of chaotic systems is the so-
called “sensitive dependence on initial conditions”: due
to the exponential growth of initial errors, different orbits
starting close together will move rapidly apart. This
behavior dramatically points out the impossibility of
measuring or computing anything (not only initial condi-
tions) exactly [1]. In spite of this, dynamical systems are
generally studied in the hypothesis that the law governing
their time evolution (i.e., the force acting on the system)
is exactly defined. It follows that error influence is un-
derestimated, a fact which can be of extreme relevance in
the case of exponential propagation of errors.

According to the above considerations, when modeling
physical systems, one should assume that the evolution
law of the system considered is only approximately well
defined or, in a less radical approach, that it has a given
functional form, but depending on parameters which can-
not be exactly defined. For example, referring to a typi-
cal chaotic system as the Duffing oscillator (a damped,
nonlinear, sinusoidally forced oscillator), it should be tak-
en into account that uncertainties affect unavoidably not
only the definition of the position and the velocity of the
point mass, as is currently assumed, but also that of the
elastic constant, of the damping coefficient, and of the
amplitude and frequency of the external force. In this pa-
per we focus our attention on the simplest class of
dynamical systems able to exhibit a chaotic behavior, i.e.,
noninvertible one-dimensional (1D) maps. Consistently
with the preceding remarks, error propagation in these
systems will be studied in the hypothesis that errors affect
both the initial condition and the map itself.

II. GENERALIZED LYAPUNOV EXPONENT
FOR 1D MAPS

One-dimensional maps can be written in the general
form

xn=f(xn~1), (1)

with f(x):I —I, where I ER is some bounded interval on
the real line R. Mathematically one defines as true orbit
{x,}] that one which satisfies Eq. (1) while the term
pseudo-orbit is used to describe orbits which arise upon
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the introduction of noise or when f is only approximately
well defined. More precisely one calls {p, },,=,,1,,,2 an €
pseudo-orbit for fif |p, +,— f(p,)| <eforalln, <n <n,.
Moreover, given a pseudo-orbit {p, }, one says that a true
orbit {x,} 8-shadows {p,} on [n,n,]if |x,—p,| <8 for
all n, =n =<n,. That pseudo-orbits can be shadowed by
true orbits has been rigorously proved under given as-
sumptions for f(x) [2,3]. While we refer the interested
reader to the quoted references for an exact statement of
shadowing results, these say essentially that for hyperbol-
ic and structurally stable systems any € perturbation of
the map can be counteracted by a change in the initial
condition so that the new true orbit is € close to the origi-
nal trajectory. More recently it has been proved that a
“mild” form of the shadowing property holds also for
chaotic, nonhyperbolic systems: while the noisy orbit
rapidly diverges from the true orbit with the same initial
point, there exists a different true orbit with a slightly
different initial point which stays near the noisy orbit for
a long time [4]. To the author’s knowledge these
mathematical results seem not to have been considered in
relation to the error propagation process in physical sys-
tems. On the other hand, it is obvious that, taking into
due account the unavoidable finiteness of observational
and computational precision, one cannot distinguish be-
tween true and pseudo-orbits: uncertainties affect both in-
itial conditions and the law governing the system time
evolution, i.e., the function f(x), and thus one has to
consider their combined effects on the system evolution.

For 1D maps, as well as for more complicated systems,
orbital divergence or convergence may be conveniently
expressed by Lyapunov exponents. These usually quanti-
fy the (exponential) amplification, or reduction, of the er-
ror on the initial condition. In order to generalize the
concept of the Lyapunov exponent to the case of an ap-
proximately well-defined f, we add to f a stochastic per-
turbation which is arbitrarily time and x dependent and
consider the propagation of errors through the map with
a linear stability analysis [5]. If dx,_; is the error in
specifying x, _; then

x,tdx,=f(x,_,+dx,_|)+eR,_,;

d
af(x,,_l)+dxnﬁ1d—£ x, +eR, ,, @
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where € is a small quantity and R, _, is a random real
number varying on a limited interval [R ;,,R ., ]; more-
over it has been supposed that f(x) is analytic in I except
for a negligible set of points. The resulting uncertainty
on x, is

dx,=dx

d
"‘1;% l+6R,,_1 , (3)

which, in terms of the error on the initial point x, be-
comes

n—1
dx,=dx H df
n—2 n—1
zRi H +Rn—1
i=0 ~z+1 *j
=(dx, ), +(dx,); . (@)

Thus the error on x, is the sum of two contributions: the
first one, (dx, )., is well known and derives from the un-
certainty on the initial value of the variable x; the second
one, (dx, ), arises from the uncertainty on the map itself.
If both contributions are to grow exponentially (so long

as the orbit separation remains infinitesimal), these
can Dbe WI;jtten, respectlvely, in the form
(dx,), =dxy2""*, (dx,), ="/ and Eq. (4) becomes

dx, =dxs2" " +e2" | (5)
Here A, is the standard Lyapunov exponent [5,6]:

n— 1
A, =l 1 6
* n1—>ncln 082 H dx x; ( )

while A+ is a generalized Lyapunov exponent defined as

Ag =nlirlzo( 1/n)log,A , (7)

where A=|3?-JR;a;| with a; —[Ij,lﬂ(df/dxi ) for

0<i<n—1 and a,_;=1. The limit of large n is neces—
sary in order to obtain a quantity that describes long-
term behavior and is independent of the initial
conditions. In the notation introduced
Ay =lim,_, ,(1/n)log,layl, thus Eq. (7) can be written
also as

Ap=A,+AL, (8)

where AA=lim, , .(1/n)logy,(A/|ayl) and we have sup-
posed a(70 (thus excluding superstable points).
For later purposes we note that Eq. (6) implies

n—1
L

—_— }\'X n
dx =2)", 9)

lim

n— o

i=0 x;

which, since the definition of A, should be independent of
the initial point for nearly all x, can be generalized as

ny 0
lim 0 df :(ka)nz 1+1,

nz-nlv»cc i-—n
i (10)

ny>n; .

We further observe that the form lim (1/n)log, 4 (with

n-— o
a>1 and A definite positive) is positive (negative) if for
large n the quantity A grows (goes to zero) exponentially
or faster, whereas it is zero if 4 grows or goes to zero
slower than exponentially, and of course if A4 tends to a
finite nonzero value.

III. ANALYSIS AND RESULTS

As is well known [5,6], positive values of A, indicate
orbital divergence and chaos whereas negative values are
typical of ordered motions and set the time scale on
which perturbations of the systems’s state will decay. Our
aim is to study the behavior of A, and to relate it to that
of A,. We first show that A, cannot be negative, or in
other words that the error on x, deriving from the uncer-
tainty on f is never (exponentially) reduced. In order
that A, be negative, for large n the quantity A should go
to zero exponentially or faster, so let us suppose that

n—1
lim A= lim | ¥ R;a; |<b™",
n-—> o0 n— o0 I=0
with b > 1; then for large n
n n—1 f
> R; ERa — <p~(ntD
i=0 dx |x,

(11)

Since df /dx |

the first member of the above inequality tends to zero for
n—c while R, is in general different from zero except
for some n (provided that the zero is included in the in-
terval [R i, Rmac D). It follows that Eq. (11) cannot be
satisfied and thus A, cannot be negative.

Let us now investigate if A, can be positive, i.e., if A
can grow exponentially or faster. We consider first the
ordered regime. Splitting the sum, A can be written as

x1is a limited quantity, the second term of

n—m n—1
=|SRa+ 3 Ral, (12)

i=0 i=n—m+1

where m is a finite integer sufficiently great that for
i<n —m it is possible to assume, according to Eq. (10),

la; |~(2™)" =11 The first sum in Eq. (12) can then be
maximized as follows:
h—m —-_m
> R;q; ME!a[~M2 ynil
i=0
_ n
=m27 3 @k, a3
= m

where M=|R_,.|. For ordered motions A, <0 (w1th the

exclusion of bifurcation points where A, =0), so <1
and the sum in Eq. (13) is convergent. The second sum in
Eq. (12) is made up of a finite number of terms, each one
being the product of a finite number of limited terms,
thus the sum itself is finite. It follows that in the ordered
regime, since A is a finite quantity, A, cannot be positive
and, being also non-negative, it must be zero.
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Let us now consider the chaotic regime. In this case
since A, >0 the final sum in Eq. (13) would diverge so, as
will soon be clear, it is more convenient to analyze the
behavior of the quantity A /|a,| which we write, splitting

the sum, as
A m -1 R;a;

|ao|

! R;a;

(14)

i=0 %  i=m %

Here m is a finite integer sufficiently great that for i >m
it is possible to assume

a:

i 1 —A

— - 2(2’ x)i
I1(df/dx|,)

j=1

ag

as follows from Eq. (10). The first sum in Eq. (14) is finite
since it is made up of a finite number of limited terms.
Maximizing the second sum we have in the limit of large

~M3 2 ™) (15)

i=m

Since 2~ * <1 the sum in Eq. (15) is convergent and con-
sequently A/|a,| is a finite quantity. Moreover A/|a|
cannot go to zero faster than exponentially: in fact in this
case AA and thus also A, (in the hypothesis of a finite A,)
would tend to — oo in contrast with the general result ob-
tained at the beginning of this section. Then if we prove
that A/|a,| cannot go to zero exponentially it will follow
that AA=0 and consequently A,=A,. Let us suppose
that lim A/lagl=b"" with b>1. Then for large n

n—> o0
we can write
é R;a; _ n 1 R;a; +Rnan
i—o 4o i=o 2o Qo
—A
—lop — —p—(nt+1)
=|sb " "+s,R, (2 F)|=b""" , (16)

where s =sgn(3"-JR;a;/a,), s, =sgnla, /a,) and, mak-

ing use of Eq. (10), we wrote a, /a, as s,(2 *)". Multi-
plying Eq. (16) for 5" *1) we obtain
bls+s,R, (b2 *y|=1. (17)

First of all we note that a necessary condition f(zr satisfy-
ing Eq. (17) in the limit of large n is that b2 *=1. {n
fact, since R, is in general different from zero, b2 ~
cannot be greater than one otherwise the left member of
Eq. (17) would grow exponentially; on the other hand,
b2 "% cannot be smaller than one because since R, is
finite the left member would tend to b which is strictly
greater than one. Then Eq. (17) amounts to

[s+s,R,|=b"". (18)

It is evident that since R, is a random number Eq. (18)
cannot in general be satisfied except at most for some n
and thus A /|a,| cannot go to zero exponentially for large
n.

Let us analyze the consequences of the above results.

In the ordered regime A, is zero so the separation of the
orbits due to the error on f(x) is not exponentially re-
duced as that deriving from the uncertainty on the initial
conditions and consequently strict orbital convergence
cannot be attained, save in the limit e—0. On the other
hand, since (dx, ), is neither exponentially amplified, the
perturbed orbit is € close to the unperturbed one for
every n and thus the shadowing property is satisfied. It is
to be stressed that these considerations are valid only as
long as A, =0: as already remarked this cannot be proved
for bifurcation points, which are nonhyperbolic points
[7]. In the chaotic regime A, is positive and its value is
identical to that of A,, so the contribution to the final er-
ror deriving from the uncertainty on the initial condition
and that originated by the error on f(x) grow exponen-
tially and with the same rate. This is essential in order
that shadowing be possible. In fact, for a pseudo-orbit
starting from x, the error at the nth iteration is

(dx,) fZGZMf ; on the other hand, for a true orbit start-
ing at x,+dx, the error at the nth iteration is
(dx, )x=dx02nk"‘ It is obvious that the true orbit can
shadow the noisy one only if these two quantities grow
exactly with the same rate.

The results obtained are quite general and hold for all
1D maps under the very mild assumptions made. In the
following we report numerical results for two of the most
representative examples of chaotic 1D maps. Let us first
consider the so-called tent map:

f(x,)=u(1—2|x,—0.5]), (19)

where, x being restricted to the interval [0,1], it is re-
quired that 0=pu =<1. If 4 <0.5, for every initial value x,
the iterates tend asymptotically to the fixed point x =0,
whereas for > 0.5 the orbit of a single initial point ap-
pears chaotically distributed all over a point set dense in
a finite interval which goes to (0,1) as u— 1. For f given
by Eq. (19) [(df /dx |xi)| =2u for every i, thus the stan-
dard Lyapunov exponent is simply A, =log,2u. In agree-
ment with the nature of the attractor, this quantity is
negative for pu<0.5 (ordered regime) and positive for
©>0.5 (chaotic regime), tending to one for p— 1. In Fig.
1 the generalized Lyapunov exponent A, is shown as a

1
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FIG. 1. A, (solid line) and A, (dashed line) as a function of u
for the tent map.
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function of u and compared with A,. As predicted by the
preceding analysis, A, is zero for ordered motions,
whereas it is positive and nearly indistinguishable from
A, in the chaotic region. The ripples shown by A, are
due to the stochastic nature of the error on f(x) and can
be reduced by improving numerical accuracy in the eval-
uation of Eq. (7).
We next consider the logistic map

filx,)=px,(1—x,), (20)

with x varying in the interval [0,1] and 0<u <4. The
behavior of the logistic map is an example of the period
doubling route to chaos [8]: initially the attracting set
consists of a single point that bifurcates into a two-point
cycle at p=3; subsequently this bifurcates into a four-
point cycle and so on, until at u , ==3.57 a cycle of infinite
length, corresponding to a chaotic attractor, appears; the
chaotic region between p, and 4 is, however, inter-
spersed with small “windows” where the attracting set is
again a periodic cycle. In Fig. 2 A, is shown as a func-
tion of u; in complete agreement with our general
analysis, A r is zero (within numerical accuracy) for
u<pu., whereas for > u, it exhibits a trend towards an
increasingly chaotic behavior (with numerical value quite
similar to that of A,) interrupted by the “windows” of
periodic behavior in which A, is again zero.

A graphical analysis, shown in Fig. 3, makes it possible
to illustrate the orbital divergence process. The error bar
on some experimentally determined single initial condi-
tion is represented by two nearby initial conditions. Simi-
larly the uncertainty affecting the map is represented by
drawing two logistic maps corresponding to slightly
different values of u. Let us first consider the trajectory
starting from one of the initial points. Upon the first
iteration, due to the uncertainty on the map, an error bar
is generated on the trajectory. This could be represented
by drawing two trajectories corresponding to the itera-
tion of the incoming one by each of the two nearby maps.

3.5 3.6 3.7 3.8 3.9 4
m

FIG. 2. A, as a function of u for the logistic map; the figure
details the region 3.5<pu<4. For u=<3.5 the curve, which is
everywhere zero within numerical accuracy, is not shown.
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FIG. 3. Successive iterations through the logistic map for
p S 4; the dashed area shows the separation of the orbits for
€=0 (see text for explanations).

In a pictorial language we could say that the single trajec-
tory is transformed into a “beam” of possible trajectories.
Each of these is in turn transformed upon the successive
iteration into another beam of trajectories. The process
is repeated at each iteration. Thus a progressive widen-
ing of the resulting overall beam, i.e., an increasing un-
certainty on x,, follows even for an exactly defined initial
condition. Actually, due to the error on the initial condi-
tion, we have an initial beam of possible trajectories each
one undergoing the above-described process. As a conse-
quence the overall orbital divergence is faster, as pointed
out in the figure, than that corresponding to the usual hy-
pothesis of an exactly defined p. If it is assumed that the
initial condition x, and the function f (x) can be specified
to the same degree of accuracy, i.e., if dxy=~e=A, Eq. (5)
can be written as

dx, ~AQ2" 42"y | 21)

which in the chaotic regime, being A, =A,=A, yields
dx, ~2A2"*. Thus at each iteration the error on the vari-
able x is twice greater than that estimated in the hy-
pothesis of an exactly defined f (x) and in the fully chaot-
ic case (A==1.0 bit per iteration [9]) dx, ~2A2"=A2""!
which implies that predictive power is completely lost
one iteration before.

In conclusion, in this paper we pointed out that, due to
the finitess of observational and computational precision,
error influence cannot be restricted to initial conditions
only, as currently assumed in the study of dynamical sys-
tems. This consideration led us to investigate error prop-
agation in one-dimensional maps in the hypothesis that
errors affect both the initial condition x, and the very
correspondence between x, and x,,,. The results ob-
tained show that both kinds of uncertainties contribute to
the final error. It follows that a faster orbit separation is
to be expected in the chaotic regime, where both contri-
butions grow exponentially and with the same rate (a
necessary condition in order that the shadowing property
hold). Moreover, even for ordered motions strict orbital
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convergence cannot in general be attained. In summary a
reduced overall dynamical stability follows from a less re-
stricted and, according to the exposed considerations,
more realistic evaluation of error influence. The analysis
presented will be extended in the immediate future to
more complicated systems.
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